Spring 2024
Due Friday April 26 1:00 p.m.

Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{Tn}}=0.75 \mathrm{~V}$, all p-channel transistors have model parameters $\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{oX}}=$ $33 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{Tp}}=-0.75 \mathrm{~V}$, and $\mathrm{C}_{\mathrm{ox}}=4 \mathrm{fF} / \mathrm{u}^{2}$. When reference is made to a reference inverter, use the same reference inverter that was introduced in the lecture notes.

Problem 1

If $\frac{W_{2}}{L_{2}}=\frac{W_{1}}{L_{1}}$, what is the trip point of the inverter? What if $\frac{W_{2}}{L_{2}}=\frac{5 W_{1}}{L_{1}}$? Assume $\mathrm{V}_{\mathrm{DD}}=3.75 \mathrm{~V}$.

Problem 2

What is the propagation delay for a k-input NOR gate where all devices are minimum sized? What about a NAND gate? Assume the load capacitance is equal to $C_{\text {REF }}$ and $V_{D D}=3.75 \mathrm{~V}$.

Problem 3 Assume a load capacitance of 30ff is to be driven. Determine $t_{H L}$ and $t_{L H}$ if it is driven by an equal rise/fall inverter (termed the reference inverter) and if it is driven by a minimum-sized inverter.

Problem 4 Four different implementations of the 8 -input NAND function are shown. If the devices are sized for equal worst-case rise and fall times, compare the input capacitance at each input and the total gate area for these 4 different implementations

Problem 5 size the devices in a 3-input NOR gate for equal worst-case rise and fall times. Assume $V_{D D}=3.75 \mathrm{~V}$.

Problem 6 Consider a two-input NOR gate sized for equal worst-case rise and fall times that is driving an identical device thereby forming a two-gate cascade.
a) Determine the trip points for all combinations of input transitions
b) Determine the fastest and slowest $t_{L H}$ for the output of the first gate in this cascade.

Problem 7 Determine the propagation delay in terms of $t_{\text {REF }}$ from B to K for the following circuit. Assume all devices sized for equal worst-case rise and fall times (with $\mathrm{OD}=1$).

Problem 8

Using Static CMOS Logic, create a circuit at the transistor level to realize the following Boolean expression. Size the devices for equal worst-case rise and fall times.

$$
F=\overline{(A B+C) D}
$$

Problem 9 The circuits shown have been proposed as digital inverters. Determine which will behave as digital inverters and which will not. If the circuit performs as a digital inverter, determine Vн and VL.

